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1. Description of Linear Prediction

which we extend to(y, ), with

Given a discrete set of original valudy, ) -
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an infinite number of zeroes, we would like to fitige best k coeﬁicients{q)mﬂlkﬂ
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that will approximatey, by —Zq Y, - A common way to define best is to use the
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least-squares sense. Which means fincﬁag)nmﬂlk]] so that to minimize the sum of

the squares of the error between the original gpdoximated values.
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Defining a, =1 gives the simplerE= Z(qun_ij which is the value we
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would like to minimize.



2. Minimizing theerror

a. Relations between coefficients a,

At E's minimum for jO[1,k] we haveg_E =0. Calculating the partial derivatives
a.
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ani(gqy”‘ijz = a(gay”_ijz =3 2y, (:ann_i}o.
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of E gives

Although the sum is written as infinite, it is fi@isince all terms vanish to zero at
k o
some point, therefore we can swap the two sum sigdgyet ZZa,. Z Yo-i Yo = 0.
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Which can be rewrittend g >_ v, V.., =0.
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Defining R=2 VoY 1)
| -

k
t takes the final following formj O[1,k].> & R, =0.
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Which can we presented in the matrix forkbd =0 with
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b. Solving for the coefficients a,

The matrix M has k+1 columns and k lines. The syste not under determined,
however in order to solve it, it is more convenienimake the system under a square
Matrix form.

We could rewrite MA, =0 into a square system easily as below, howevee tisean



easier and better although less direct way to dbigesystem.
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Looking at M, we can notice that M is very closeb®a Toeplitz symmetric Matrix,

with only the top row missing. We also notice tlapending the top row would
complete it into a square Matrix and system.
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We do not know the value oE, at that point since it is a function oy, and the

coefficients (R]. )J_Dﬂo_k]] :

This is a regular square linear system that we reansolve with the usual linear
system solver. However this system being a Toepti&trix, can actually be solved
better and quicker with a very simple recursive hodtcalled the Levinson-Durbin
recursion.

3. Levinson-Durbin recur sion

The basic simple ideas behind the recursion asetfiat it is easy to solve the system
for k=1, and second that it is also very simple to sébre a k+1 coefficients
sized problem when we have solved a fok acoefficients sized problem. In general
none of the coefficients of the different sized ldemn match, so it is not a way to
calculate a,,, but a way to calculate the whole vectd,, as a function ofN,,; ,

E, and A . Thinking about it Levinson-Durbin induction woub@ a better name.
a. Solving the size one problem

R R

We are looking for A :Lﬂ so that Nﬁfﬁﬂ with N, ={R1 Rj and E is



not necessary at this stage. The dot product of¢isend line of N, and A gives

R+R@a =0, with R = i y,2>0.
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= —_Rl 2
a="g @)
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Therefore, we have found = L‘j and also

E =R+Ra 3)

b. Solving the size k+1 problem

Suppose that we have solved the size k problemhamd found A, N, and E,.
Then we have

1] [E
T el o
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N,,, has one more row and column thaM) so we can not apply it directly t@ ,

however if we expendA, with a zero and call this vectdd,,, we can applyN,.,
to it and we get the following interesting result

- E,
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Since the matrix is symmetric, we also have somgthemarkable when reversing the
order of coefficients ofU,,, and calling this vectolv,,, .
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We can notice that a linear combinatiah,,, + AV, ,, is of the form wanted for A,

since the first element is a 1 for all values.df Now if there was a value off for
_Ek+1_

which N,,;(U,,,+4) would looklike| 0 |, E., notbeing known at this stage,

that would mean that we have founqﬂj )
Calculating N,,,(U,,, +A) gives
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So we just need to findl satisfying > a,R.,,.; +AE, =0 which is trivial.
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Therefore A=12_ 4)
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And aISO A<+1 =Uk+1+AVk+1 (5)
k

Finally Ea=E +AY.aR,,; =(1-1?)E, (6)
=0



c. Summary of the algorithm

« Choose m the number of coefficients wanted
 Compute all the(Rj) o] using (1)

j
 Compute A using (2)
 Compute E; using (3)
e Forkfrom1ltom

» Calculate A using (4)
« CalculateU,,,, V,,,, A, using (5)

* Update E,,, using (6)

4. Appendix. Non optimized C++ code

#include <math.h>
#include <vector>

using namespace std;
/l Returns in vector linear prediction coefficients calculated using Levinson Durbin

void ForwardLinearPrediction( vector<double> &coeffs, const vector<double> &x')

{
/l GET SIZE FROM INPUT VECTORS

size_t N =x.size() - 1;
size_t m = coeffs.size();

/I INITIALIZE R WITH AUTOCORRELATION COEFFICIENTS
vector<double> R(m + 1, 0.0);
for (size_ti=0;i<=m;i++)

for (size_tj=0;j<=N-i; j++)
RET+=x[j1*x[j+i];
}

/I INITIALIZE Ak
vector<double> Ak(m + 1, 0.0);
Ak[0]=1.0;

/I INITIALIZE Ek
double Ek = R[ 0 ];

/I LEVINSON-DURBIN RECURSION
for (size_tk =0; k <m; k++)
{

/| COMPUTE LAMBDA

double lambda = 0.0;

for (size_tj=0;j<=k; j++)

lambda -= AK[j]*R[k+1-]];



}

}
lambda /= Ek;

/I UPDATE Ak
for(size_tn=0;n<=(k+1)/2;n++)

double temp = Ak[k +1-n]+lambda* Ak[ n];
AK[n]=Ak[n]+lambda* Ak[k+1-n];
AK[k+1-n]=temp;

}

/I UPDATE Ek
Ek *= 1.0 - lambda * lambda;

/I ASSIGN COEFFICIENTS
coeffs.assign( ++Ak.begin(), Ak.end() );

/l Example program using Forward Linear Prediction

int main( int argc, char *argv[] )

{

/I CREATE DATA TO APPROXIMATE
vector<double> original( 128, 0.0 );
for (size_ti=0;i < original.size(); i++)

original[i]=sin(i*0.01) + 0.75 * sin(i * 0.03)
+0.5*sin(i*0.05)+0.25 *sin(i*0.11);
}

/I GET FORWARD LINEAR PREDICTION COEFFICIENTS
vector<double> coeffs( 4, 0.0);
ForwardLinearPrediction( coeffs, original );

/I PREDICT DATA LINEARLY
vector<double> predicted( original );
size_t m = coeffs.size();

for ( size_ti=m; i< predicted.size(); i++)

predicted[i] = 0.0;
for (size_tj=0;j<m;j++)

predicted[ i ] -= coeffs[j] * original[i-1-]];
}
/I CALCULATE AND DISPLAY ERROR
double error = 0.0;
for (size_ti=m; i< predicted.size(); i++)
printf( "Index: %.2d / Original: %.6f / Predicted: %.6f\n", i, original[ i ], predicted[i] );
double delta = predicted[ i ] - original[ i ];
error += delta * delta;

printf( "Forward Linear Prediction Approximation Error: %f\n", error );

return O;



