Linear Prediction and Levinson-Durbin Algorithm

Cedrick Collomb
http://ccollomb.free.fr/
Copyright © 2009. All Rights Reserved.

Created: February 3, 2009
Last Modified: November 12, 2009

Contents

1. Description Of LiN€ar PrediClioN ceeeeurrreeiiiriiiiiiiiieiieeiieesreeereeeereeseeeeeeeseeeseessnessnns 1

2. MINIMIZING ThE ©ITOT ...ueiiiiiiiiiiieeeeeeee e e et r e e e aeeaaeeeaeeaaaeaaeeeeeaeeens 2
a. Relations between COEfICIENIS. A........viiieieiiiiie e e e 2
b. Solving for the COEfICIENTSHA.uuuuieiiiiiiiiiiiiiiiiiii e 2

3. LeVvinsSON-DUIDIN FECUISIONcceieeee e sttt eeeeeteeeeeeeee et e et teeeeaaaaaeeeseaaasssasannnnnnnnnnnnnes 3
a. Solving the size 0Ne Problem ...t 3
b. Solving the size K+1 problem ... 4
C. Summary of the algorithm..........oooi i 6

4. Appendix. Non optimized C++ COUEcoovvviiiiiiiiiiiiiiiieeeceeeeeeee e 6

1. Description of Linear Prediction

which we extend to(y,), with

Given a discrete set of original valudy,) -

nom]

an infinite number of zeroes, we would like to fitige best k coeﬁicients{q)mﬂlkﬂ

k
that will approximatey, by —Zq Y, - A common way to define best is to use the
i=1

least-squares sense. Which means fincﬁag)nmﬂlk]] so that to minimize the sum of

the squares of the error between the original gpdoximated values.

c- 5 (s Fon) < £ Eon

n=-c n=-c0

© [k 2
Defining a, =1 gives the simplerE= Z(qun_ij which is the value we
i=0

n=-c0

would like to minimize.

2. Minimizing theerror

a. Relations between coefficients a,

At E's minimum for jO[1,k] we haveg_E =0. Calculating the partial derivatives
a.
]

ani(gqy”‘ijz = a(gay”_ijz =3 2y, (:ann_i}o.

aaj = aaj et

of E gives

Although the sum is written as infinite, it is fi@isince all terms vanish to zero at
k o
some point, therefore we can swap the two sum sigdgyet ZZa,. Z Yo-i Yo = 0.

i=0 n=-o

k)
Which can be rewrittend g >_ v, V.., =0.

i=0 n=-co

Defining R=2 VoY 1)
| -

k
t takes the final following formj O[1,k].> & R, =0.

i=0

Which can we presented in the matrix forkbd =0 with

'R R R - R 1
R, R R - R 3
M=| : : .1 | and A =4,
Ra R = R R 5
LR R o Ry 3]

b. Solving for the coefficients a,

The matrix M has k+1 columns and k lines. The syste not under determined,
however in order to solve it, it is more convenienimake the system under a square
Matrix form.

We could rewrite MA, =0 into a square system easily as below, howevee tisean

easier and better although less direct way to dbigesystem.

I:20 R1 Rk—l a Ro
Ri Ro Rk—z a|_ Rl

Rk—l Rk—2 Ro a Rk—l
Looking at M, we can notice that M is very closeb®a Toeplitz symmetric Matrix,

with only the top row missing. We also notice tlapending the top row would
complete it into a square Matrix and system.

E, 1
NA = 0| with N=| T Rl ang a =g,
6 ReRa R a

We do not know the value oE, at that point since it is a function oy, and the

coefficients (R].)J_Dﬂo_k]] :

This is a regular square linear system that we reansolve with the usual linear
system solver. However this system being a Toepti&trix, can actually be solved
better and quicker with a very simple recursive hodtcalled the Levinson-Durbin
recursion.

3. Levinson-Durbin recur sion

The basic simple ideas behind the recursion asetfiat it is easy to solve the system
for k=1, and second that it is also very simple to sébre a k+1 coefficients
sized problem when we have solved a fok acoefficients sized problem. In general
none of the coefficients of the different sized ldemn match, so it is not a way to
calculate a,,, but a way to calculate the whole vectd,, as a function ofN,,; ,

E, and A . Thinking about it Levinson-Durbin induction woub@ a better name.
a. Solving the size one problem

R R

We are looking for A :Lﬂ so that Nﬁfﬁﬂ with N, ={R1 Rj and E is

not necessary at this stage. The dot product of¢isend line of N, and A gives

R+R@a =0, with R = i y,2>0.

n=-o0

Therefore
= —_Rl 2
a="g @)

1
Therefore, we have found = L‘j and also

E =R+Ra 3)

b. Solving the size k+1 problem

Suppose that we have solved the size k problemhamd found A, N, and E,.
Then we have

1] [E
T el o
RoRa o R,

N,,, has one more row and column thaM) so we can not apply it directly t@ ,

however if we expendA, with a zero and call this vectdd,,, we can applyN,.,
to it and we get the following interesting result

- E,

1

0

R) I:‘):I. . R<+1 a1 O
R RRL
. . . : . O
R R Ro | & K

0. Zaij_j

Since the matrix is symmetric, we also have somgthemarkable when reversing the
order of coefficients ofU,,, and calling this vectolv,,, .

0] |JaRa
R R Ru o
RO R = R|i|_| .
oo a, 0
R R - Rl & 0
1 i Ek |

We can notice that a linear combinatiah,,, + AV, ,, is of the form wanted for A,

since the first element is a 1 for all values.df Now if there was a value off for
Ek+1

which N,,;(U,,,+4) would looklike| 0 |, E., notbeing known at this stage,

that would mean that we have founqﬂj)
Calculating N,,,(U,,, +A) gives
_) ,
S Ek+/1z(;aerk+1_j
=
R R Ral| a+4a 0
R R Ro||[a+da,|_ 0
Rar R R | a+Aa 0
A Kk
B B ZajR(+1—j+/1Ek
L =0 i

k
So we just need to findl satisfying > a,R.,,.; +AE, =0 which is trivial.
j=0

k

_Z a, R<+1—j

Therefore A=12_ 4)

Ek

And aISO A<+1 =Uk+1+AVk+1 (5)
k

Finally Ea=E +AY.aR,,; =(1-1?)E, (6)
=0

c. Summary of the algorithm

« Choose m the number of coefficients wanted
 Compute all the(Rj) o] using (1)

j
 Compute A using (2)
 Compute E; using (3)
e Forkfrom1ltom

» Calculate A using (4)
« CalculateU,,,, V,,,, A, using (5)

* Update E,,, using (6)

4. Appendix. Non optimized C++ code

#include <math.h>
#include <vector>

using namespace std;
/l Returns in vector linear prediction coefficients calculated using Levinson Durbin

void ForwardLinearPrediction(vector<double> &coeffs, const vector<double> &x')

{
/l GET SIZE FROM INPUT VECTORS

size_t N =x.size() - 1;
size_t m = coeffs.size();

/I INITIALIZE R WITH AUTOCORRELATION COEFFICIENTS
vector<double> R(m + 1, 0.0);
for (size_ti=0;i<=m;i++)

for (size_tj=0;j<=N-i; j++)
RET+=x[j1*x[j+i];
}

/I INITIALIZE Ak
vector<double> Ak(m + 1, 0.0);
Ak[0]=1.0;

/I INITIALIZE Ek
double Ek = R[0];

/I LEVINSON-DURBIN RECURSION
for (size_tk =0; k <m; k++)
{

/| COMPUTE LAMBDA

double lambda = 0.0;

for (size_tj=0;j<=k; j++)

lambda -= AK[j]*R[k+1-]];

}

}
lambda /= Ek;

/I UPDATE Ak
for(size_tn=0;n<=(k+1)/2;n++)

double temp = Ak[k +1-n]+lambda* Ak[n];
AK[n]=Ak[n]+lambda* Ak[k+1-n];
AK[k+1-n]=temp;

}

/I UPDATE Ek
Ek *= 1.0 - lambda * lambda;

/I ASSIGN COEFFICIENTS
coeffs.assign(++Ak.begin(), Ak.end());

/l Example program using Forward Linear Prediction

int main(int argc, char *argv[])

{

/I CREATE DATA TO APPROXIMATE
vector<double> original(128, 0.0);
for (size_ti=0;i < original.size(); i++)

original[i]=sin(i*0.01) + 0.75 * sin(i * 0.03)
+0.5*sin(i*0.05)+0.25 *sin(i*0.11);
}

/I GET FORWARD LINEAR PREDICTION COEFFICIENTS
vector<double> coeffs(4, 0.0);
ForwardLinearPrediction(coeffs, original);

/I PREDICT DATA LINEARLY
vector<double> predicted(original);
size_t m = coeffs.size();

for (size_ti=m; i< predicted.size(); i++)

predicted[i] = 0.0;
for (size_tj=0;j<m;j++)

predicted[i] -= coeffs[j] * original[i-1-]];
}
/I CALCULATE AND DISPLAY ERROR
double error = 0.0;
for (size_ti=m; i< predicted.size(); i++)
printf("Index: %.2d / Original: %.6f / Predicted: %.6f\n", i, original[i], predicted[i]);
double delta = predicted[i] - original[i];
error += delta * delta;

printf("Forward Linear Prediction Approximation Error: %f\n", error);

return O;

