
 1

Linear Prediction and Levinson-Durbin Algorithm 
 
 
Cedrick Collomb 
http://ccollomb.free.fr/ 
Copyright © 2009. All Rights Reserved. 
 
Created: February 3, 2009 
Last Modified: November 12, 2009 
 
 
 

Contents 
 
1. Description of Linear Prediction ............................................................................................... 1 
2. Minimizing the error ................................................................................................................. 2 

a. Relations between coefficients an ..................................................................................... 2 

b. Solving for the coefficients an .......................................................................................... 2 

3. Levinson-Durbin recursion ....................................................................................................... 3 
a. Solving the size one problem ........................................................................................... 3 
b. Solving the size k+1 problem ........................................................................................... 4 
c. Summary of the algorithm ................................................................................................ 6 

4. Appendix. Non optimized C++ code ........................................................................................ 6 
 
 

1. Description of Linear Prediction 

Given a discrete set of original values ( )
� �0,n n M

y
∈

 which we extend to ( )n n
y

∈Z
 with 

an infinite number of zeroes, we would like to find the best k coefficients ( )
� �1,n n k

a
∈

 

that will approximate ny  by 
1

k

i n i
i

a y −
=

−∑ . A common way to define best is to use the 

least-squares sense. Which means finding ( )
� �1,n n k

a
∈

 so that to minimize the sum of 

the squares of the error between the original and approximated values. 
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Defining 0 1a =  gives the simpler 
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∑ ∑  which is the value we 

would like to minimize. 
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2. Minimizing the error 

a. Relations between coefficients an 

At E's minimum for � �1,j k∈  we have 0
j

E

a

∂ =
∂

. Calculating the partial derivatives 

of E gives 
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Although the sum is written as infinite, it is finite since all terms vanish to zero at 

some point, therefore we can swap the two sum signs and get 
0
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Which can be rewritten 
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R y y
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+
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= ∑  (1) 
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t takes the final following form � �
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Which can we presented in the matrix form 0kMA =  with 
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b. Solving for the coefficients an 

The matrix M has k+1 columns and k lines. The system is not under determined, 
however in order to solve it, it is more convenient to make the system under a square 
Matrix form. 
 
We could rewrite 0kMA =  into a square system easily as below, however there is an 
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easier and better although less direct way to solve this system. 
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Looking at M, we can notice that M is very close to be a Toeplitz symmetric Matrix, 
with only the top row missing. We also notice that expending the top row would 
complete it into a square Matrix and system. 
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We do not know the value of kE  at that point since it is a function of kA  and the 

coefficients ( )
� �0;j j k

R
∈

. 

 
This is a regular square linear system that we can not solve with the usual linear 
system solver. However this system being a Toeplitz matrix, can actually be solved 
better and quicker with a very simple recursive method called the Levinson-Durbin 
recursion. 
 

3. Levinson-Durbin recursion 

The basic simple ideas behind the recursion are first that it is easy to solve the system 
for 1k = ,  and second that it is also very simple to solve for  a 1k +  coefficients 
sized problem when we have solved a for a k  coefficients sized problem. In general 
none of the coefficients of the different sized problem match, so it is not a way to 
calculate 1ka +  but a way to calculate the whole vector 1kA +  as a function of 1kN +  , 

kE  and kA . Thinking about it Levinson-Durbin induction would be a better name. 

 

a. Solving the size one problem 

We are looking for 1
1

1
A

a

 
=  
 

 so that 1
1 1 0

E
N A

 
=  
 

 with 0 1
1

1 0

R R
N

R R

 
=  
 

 and 1E  is 



 4

not necessary at this stage. The dot product of the second line of 1N  and 1A  gives 

1 0 1 0R R a+ = , with 2
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b. Solving the size k+1 problem 

Suppose that we have solved the size k problem and have found kA , kN  and kE . 

Then we have 
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1kN +  has one more row and column than kN  so we can not apply it directly to kA , 

however if we expend kA  with a zero and call this vector 1kU +  we can apply 1kN +  

to it and we get the following interesting result 
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Since the matrix is symmetric, we also have something remarkable when reversing the 
order of coefficients of 1kU +  and calling this vector 1kV + . 
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We can notice that a linear combination 1 1k kU Vλ+ ++  is of the form wanted for  1kA +  

since the first element is a 1 for all values of λ . Now if there was a value of λ  for 
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So we just need to find λ  satisfying 1
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c. Summary of the algorithm 

• Choose m the number of coefficients wanted 

• Compute all the ( )
� �0;j j m

R
∈

 using (1) 

• Compute 1A  using (2) 

• Compute 1E  using (3) 

• For k from 1 to m 
• Calculate λ  using (4) 
• Calculate 1kU + , 1kV + , 1kA +  using (5) 

• Update 1kE +  using (6) 

 

4. Appendix. Non optimized C++ code 

#include <math.h> 
#include <vector> 
 
using namespace std; 
 
// Returns in vector linear prediction coefficients calculated using Levinson Durbin 
 
void ForwardLinearPrediction( vector<double> &coeffs, const vector<double> &x ) 
{ 
    // GET SIZE FROM INPUT VECTORS 
    size_t N = x.size() - 1; 
    size_t m = coeffs.size(); 
 
    // INITIALIZE R WITH AUTOCORRELATION COEFFICIENTS 
    vector<double> R( m + 1, 0.0 ); 
    for ( size_t i = 0; i <= m; i++ ) 
    { 
        for ( size_t j = 0; j <= N - i; j++ ) 
        { 
            R[ i ] += x[ j ] * x[ j + i ]; 
        } 
    } 
 
    // INITIALIZE Ak 
    vector<double> Ak( m + 1, 0.0 ); 
    Ak[ 0 ] = 1.0; 
 
    // INITIALIZE Ek 
    double Ek = R[ 0 ]; 
 
    // LEVINSON-DURBIN RECURSION 
    for ( size_t k = 0; k < m; k++ ) 
    { 
        // COMPUTE LAMBDA 
        double lambda = 0.0; 
        for ( size_t j = 0; j <= k; j++ ) 
        { 
            lambda -= Ak[ j ] * R[ k + 1 - j ]; 
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        } 
        lambda /= Ek; 
 
        // UPDATE Ak 
        for ( size_t n = 0; n <= ( k + 1 ) / 2; n++ ) 
        { 
            double temp = Ak[ k + 1 - n ] + lambda * Ak[ n ]; 
            Ak[ n ] = Ak[ n ] + lambda * Ak[ k + 1 - n ]; 
            Ak[ k + 1 - n ] = temp; 
        } 
 
        // UPDATE Ek 
 Ek *= 1.0 - lambda * lambda; 
    } 
 
    // ASSIGN COEFFICIENTS 
    coeffs.assign( ++Ak.begin(), Ak.end() ); 
} 
 
// Example program using Forward Linear Prediction 
 
int main( int argc, char *argv[] ) 
{ 
 // CREATE DATA TO APPROXIMATE 
 vector<double> original( 128, 0.0 ); 
 for ( size_t i = 0; i < original.size(); i++ ) 
 { 
  original[ i ] = sin( i * 0.01 ) + 0.75 * sin( i * 0.03 ) 
     + 0.5 * sin( i * 0.05 ) + 0.25 * sin( i * 0.11 ); 
     } 
 
 // GET FORWARD LINEAR PREDICTION COEFFICIENTS 
 vector<double> coeffs( 4, 0.0 ); 
 ForwardLinearPrediction( coeffs, original ); 
 
 // PREDICT DATA LINEARLY 
 vector<double> predicted( original ); 
 size_t m = coeffs.size(); 
 for ( size_t i = m; i < predicted.size(); i++ ) 
 { 
  predicted[ i ] = 0.0; 
  for ( size_t j = 0; j < m; j++ ) 
  { 
   predicted[ i ] -= coeffs[ j ] * original[ i - 1 - j ]; 
  } 
 } 
 
 // CALCULATE AND DISPLAY ERROR 
 double error = 0.0; 
 for ( size_t i = m; i < predicted.size(); i++ ) 
 { 
  printf( "Index: %.2d / Original: %.6f / Predicted: %.6f\n", i, original[ i ], predicted[ i ] ); 
  double delta = predicted[ i ] - original[ i ]; 
  error += delta * delta; 
 } 
 printf( "Forward Linear Prediction Approximation Error: %f\n", error ); 
 
 return 0; 
} 
 


